

Didier Demazière1,

François Horn2,

Nicolas Jullien3.

How free software developers
work. The mobilization of
“distant communities”.
RÉSUMÉ.

Nous abordons dans cet article la question des incitations à participer au dé-
veloppement d'un logiciel libre. Nous avons réalisé un travail d'enquête au-
près des développeurs de logiciels libres français (et aussi des personnalités
défendant cette forme de production, les «figures» du libre). Notre objectif a
été de déterminer l'importance respective de ces motivations et éventuellement
d'en identifier d'autres, ainsi que de définir les caractéristiques des personnes
impliquées dans ces projets.

MOTS CLEFS: TIC, LOGICIEL LIBRE, DÉVELOPPEURS, INCITATIONS, ORGANISATION DE LA
PRODUCTION.

ABSTRACT.

We analyze the question of the incitations for a developer to participate to
FLOSS (Free-Libre-Open Source Software) development. We have inter-
viewed some French developers and personalities advocating this form of de-
velopment (FLOSS “figures”). Our goal was to determine their motivations,
the relative importance of these motivation, and the characteristics of people
involved in such projects.

KEYWORDS: FLOSS, INCENTIVES, DEVELOPERS, PRODUCTION ORGANIZATION.

Môle Armoricain de Recherche sur la Société de l’Information et les Usages d’INternet.
http://www.marsouin.org

CAHIER DE RECHERCHE.
Juillet 2006 - Numéro 7-2006

1 : CNRS, laboratoire Printemps,
UVSQ
2 : CLERSE, IFRESI
3 : M@rsouin

Didier.Demaziere@printemps.uvs-
q.fr

Francois.Horn@univ-lille3.fr

Nicolas.Jullien@enst-bretagne.fr

http://www.marsouin.org

1. INTRODUCTION.
Free software are programs distributed with
their source code (the text of the program writ-
ten in a programming language that is compre-
hensible for humans) and with the authorization
to modify and redistribute them freely, which
differentiates them radically from private or
“proprietary” software.

Their development is based on the participation
of volunteers within a cooperative organization
that relies a great deal on the organizational fa-
cilities provided by the Internet.

This configuration leads to questions on the
characteristics of the collective action that en-
ables the transition from individual voluntary
commitments that are potentially volatile and
unstable to the completion of a collective pro-
duction that involves continuity and sustainabil-
ity. The production of free software cannot be
considered the contingent result of a sponta-
neous convergence of individual, independent
commitments. It presupposes certain forms of
motivation for the participants to work, who are
in turn capable of ensuring a certain continuity
in their commitments and of coordinating the
organization of their contributions. Because
even if a software program is a text, it is an “ac-
tive” text that works insofar as it is made up of a
list of instructions that are automatically execut-
ed by a machine, which requires an extremely
strong coherency of the different parts of the
text (Horn, 2004).

Empirical preliminary observations show that
developers have a wide range of statuses (stu-
dents, employees of research centers or private
companies engaged in activities related to free
software or not at all…) This infers heteroge-
neous links between the activity of developing
free software and salaried work. The former can
take place outside of working (salaried) hours,
exclusively or not, but it can also take place dur-
ing working (salaried) hours and thus can be, ac-
cording to the case, hidden, tolerated, unofficial,
official, required, recognized or valued. The de-

velopment of free software takes place within
plural legal and temporal systems.

These heterogeneous figures extend well beyond
the scope of volunteer work and they indicate
also another stake in this productive activity: the
cooperation between contributors without which
it would be impossible to develop a useable
product. Yet, in general, these contributors are
not enrolled in the same organization, are dis-
persed, have computer-mediated relationships
via the Internet, and are not linked by the lines
of an organization chart (Gensollen, 2004)

The absence of direct, codified and prescribed
interaction between the producers is counterbal-
anced by sharing the sense of belonging to a
specific group with a strong identity. At least
this is how we can interpret the repeated refer-
ences to “free communities” on the part of con-
tributors. This indigenous terminology does not
reveal its true meaning immediately, but it pro-
vides a clue to understanding the way the collec-
tive activity is carried out in the absence of or-
ganizational levers that usually make up the
framework of work activities and the partici-
pants at work.

The work of free software developers is there-
fore both an individual activity carried out in ex-
tremely heterogeneous conditions and a collec-
tive action with original production methods.
We propose to analyze this work starting with
the paradoxical notion of a “distant
community”, that aims to illustrate the tension
between, on the one hand, the strength of the
sense of belonging to a specific world identifi-
able in the discourse of the participants and, on
the other hand, the distances that separate the
contributors in terms of relationships, status,
and background. In doing this the aim is to pro-
duce a description, necessarily plural, of the dif-
ferent forms of “distant communities” that en-
ables the production of goods in unique social
and organizational conditions. More generally
speaking, this notion points to methods of coor-
dination that combine two forms of collective
action that are usually contrary and antagonistic:
a communitarian form based on the subjective

Môle Armoricain de Recherche sur la Société de l’Information et les Usages d’INternet.
http://www.marsouin.org

Page 2

feeling of belonging to the same community and
a form of partnership based on the coordination
of common interests and sharing of objectives
(Tönnies, 1887, Weber, 1921).

At first, we will examine the ways the individu-
al participants organize themselves in order to
contribute to a project and we will focus on the
forms of cooperation and coordination used to
deal with the constraints of efficiency and quali-
ty associated with the distribution of a product.
Secondly, we will look at the other side of the
coin and examine the ways individual partici-
pants take action and we will underline the
mechanisms of commitment and participation
that account for their contribution to the produc-
tion of free software. These two dimensions,
that in our opinion are inseparable, are explored
through a survey carried out with free software
developers1.

2. A COLLECTIVE PROJECT:
ORGANIZING PRODUCTION
FROM A DISTANCE.

The production of free software is often carried
out according to a plan where one person alone
writes the entire program which is obviously
limited in size. Even in this case, the updates,
the correction of bugs, and the further develop-
ments can be socialized. And for more ambi-
tious projects, which is the case of most well-
known free software, the cooperation of several
developers who write fragments of the program
is required. Rules must be defined and decision-
making bodies must be set up to organize the in-
terfaces, distribute the work, combine the contri-
butions, and edit the final product. Producers of
private software distribute work according to or-
ganization charts and give assignments to a hier-
archy that monitors the execution of tasks and
1 In this respect our study is quite different from previous
studies of the “motivations” of developers based on ques-
tionnaires (FLOSS, 2002). If we lose statistical width we
gain in details of the process of participation of develop-
ers by linking them with the operating rules of the groups
and projects within which they are applied.

coordinates the work of the developers. “Free”
production has been analyzed as being founded
on a “set of customs of cooperation that are the
opposite of management by coercion” (Ray-
mond 1998), or on strategies of free cooperation
based on “give and take” (Printz 1998). These
organizational forms that are barely hierarchical
and hardly formalized are like the “model of a
bazaar” compared to the “model of a cathedral”
(Raymond, 1998) and reflect an emerging, more
general, model referred to as “distributed knowl-
edge” (Thévenot, 1997).

Before examining the workings of real collec-
tives oriented towards the production of specific
software, we will describe several transversal
properties that structure and organize the work
of free software developers.

Linking isolated workers and coordi-
nating individual production.
Contributing to a free software program is es-
sentially a highly individual activity, as Ernest2,
a Debian (Linux distribution) developer points
out: “it remains a solitary job; Debian is 1,000
people working alone who make up a whole”. In
the same way, Linus Torvalds, the initiator of
the Linux project, considers that “free software
is made by craftsmen who are passionate about
their art”.

But in order for these different contributions to
make up a software program, it is vital that col-
laboration be organized due to the properties of
the product.

The aggregation of individual production in a
collective significant and useful collective prod-
uct is possible due to a series of organizing
mechanisms of the production that, while they
are different from institutional, coded or legal
regulations, are efficient nonetheless.

The first mechanism is founded on a rigorous
modular structure of the software that enables
the creation of bits and pieces, and composition
through assembling the fragments written inde-

2 The names refer to the free software developers we have
interviewed. They have been modified to protect the pri-
vacy of the people we have met.

Môle Armoricain de Recherche sur la Société de l’Information et les Usages d’INternet.
http://www.marsouin.org

Page 3

pendently by different people. This open and
modular architecture is necessary because of the
absence of a hierarchy with the power to chan-
nel and guide the work and contributions of the
developers. Designed to facilitate cooperation
between participants, it is also unanimously con-
sidered as a decisive factor for the quality of the
software, but is rarely respected by commercial
companies (Jullien, 2001). Moreover it allows
for “the bulk of the architecture, implementation
and creation phases of a software program to be
carried out at the same time” (Brooks, 1996)

The second mechanism is founded on two char-
acteristics of the software: the complexity of
this technological object which means that a
system composed of many developers working
on the same program for a long period of time
remains a phase of increasing efficiency and
secondly the intangible character of software
that allows it to circulate rapidly at practically
no cost and which explains that all users can
benefit from improvements without additional
investments. The development of programs in
the form of free software “engenders gigantic ef-
fects of learning by doing, i.e. taking full advan-
tage of a fantastic distributed intelligence: mil-
lions of users that find problems and thousands
of programmers who find how to get rid of
them” (Foray, Zimmermann, 2001). In particu-
lar, this method of development is particularly
efficient in eliminating errors, a task that consti-
tutes a large part of the work involved in the
creation of a software program. This is different
from proprietary software that is more often
than not revised by people very close to the au-
thors and who make the same mistakes. A free
software program can be examined by people
who use a wide range of methods and tools
which means that “each problem will be rapidly
isolated and the solution will be obvious to
someone” (Raymond, 1998).

The third mechanism consists in the verification
of individual production. The setting up of one
(or more) authoritative bodies that control and
arbitrate between different contributions and se-
lect developments that are validated for integra-
tion in the software program is systematic in all

the projects. The way they are established and
the way they operate can differ, but their exis-
tence is proof of a formal and explicit organiza-
tion. Thus Bernard describes a world that is
“very, very structured. And then there is compe-
tition. Several people can propose different
modules to solve a particular problem, and it is
this group of decision-makers that for one or an-
other component in the software is going to
compare them and say: we’ll select this one and
not the other. Therefore competition is open in
intellectual terms, if I might say so, and after
there is really a selection”. Individual produc-
tion is not prescribed or ordered by a decision-
making body but it is always evaluated and vali-
dated or rejected. We must however underline
the fact that in this form of organization that is
strongly horizontal even if it is not a totally flat
network, the decision-making bodies have a
unique technical legitimacy based on compe-
tence recognized by other developers and do not
have any economic power over them. The ab-
sence of private appropriation of the software
produced provides the possibility for a group of
developers who are unhappy with the decisions
made to develop an alternative project based on
the existing software program (Himanen, 2001).

The fourth mechanism is identification of the
work of each contributor: the lines of code are
signed by their authors. The name of the devel-
oper is written near the parts of the source code
on which he has worked and also in most free
software programs there is a file entitled “cred-
its” that lists the principal contributors to the
software program and their participation. In a
free software program the part that was done by
each developer is publicly exposed which en-
ables everyone to judge its quality. This point is
very important because the qualities of a soft-
ware program are not directly perceived through
its use in that it is in fact a product in a system
that interacts with other software programs and
hardware components. In a free software pro-
gram “the availability of the source code in-
volves the programmer’s sense of pride because
he knows that he is going to be judged by his
peers. And for a computer programmer there are
few personal satisfactions greater than having

Môle Armoricain de Recherche sur la Société de l’Information et les Usages d’INternet.
http://www.marsouin.org

Page 4

contributed to writing a program that is appreci-
ated, used, taken up and improved over 10 years
by thousands of programmers and millions of
users because of its inherent qualities” (Di Cos-
mo, Nora, 1998).

These last two mechanisms allow for a fifth one:
competition which influences the relation be-
tween contributors. Each developer can judge
the quality of his work and his recognition: the
selection of his proposal to contribute to a pro-
gram, the choice of his suggestion for a correc-
tion, the integration of his program in a distribu-
tion, the number of times his software program
is downloaded. Raymond (1998) insists on “the
prospect of auto gratification by taking part in
the action and being rewarded by constantly see-
ing (even on a daily basis) improvements of
their work”. The visibility of contributors cre-
ates competition and “a situation where the only
possible evaluation of success in this competi-
tion is the reputation that each person earns with
his peers (…) The participants compete for pres-
tige by contributing time, energy, and creativity”
(Raymond, 2000). Taking into account the het-
erogeneity of the legal and temporal systems
within which the developers evolve, it is not
certain that this competition leads always to an
intensification of commitment and to an in-
crease in time and energy spent by each partici-
pant. But at least it contributes to regulating ac-
cess to and the maintenance of this work and
helps produce quality. In a way, the free soft-
ware program model is organized according to
the same principles as scientific research: free
circulation of information that is criticized pub-
licly, verification by peers, proposals for alterna-
tive solutions, and fierce competition between
teams (Lang, 1999).

These regulatory mechanisms ensure that isolat-
ed or distant participants come together around
collective projects. But they differ according to
the project and thus configure differentiated or-
ganizational modes that we are now going to ex-
plore.

Different organizational systems, dif-
ferent social groups.
Free software programs form a heterogeneous
collection which has consequences on the meth-
ods used to produce them: the number and char-
acteristics of the contributors, the organization
of cooperation, the role and interest given to po-
tential users. Thus, the general mechanisms
identified earlier find special adaptations in each
project. The way that tasks are distributed, the
quality of programs is evaluated, errors are de-
tected and corrected, and contributors are re-
cruited corresponds each time to specific config-
urations. And each configuration can be consid-
ered as an attempt to build efficient cooperation
and beyond that a minimal group solidarity be-
tween “distant” workers.

Certain characteristics reveal the organizational
diversity of what we have decided to call “dis-
tant communities”: the size of the circle of prin-
cipal contributors (which can moreover vary a
great deal as the project evolves), but also the
size of the other circles (secondary contributors
who propose minor corrections, users who re-
port errors); the characteristics of the initiators
of the project, who can be individuals or public
and private institutions of various sizes; the
properties of the links that unite them, that can
be limited to participation in the project or have
been established before (network of alumni or
colleagues in a particular field of study, a con-
sortium of companies that have other objectives,
etc.); the nature of the objectives and perspec-
tives that reunite them and that can oscillate be-
tween multiple components that are not exhaus-
tive (taking up a technical challenge, developing
a market niche, defending certain values, etc.);
the origins and the circumstances behind the
project launch (improving particular functionali-
ties, reviving a dormant project, planning ambi-
tious objectives, etc.) We can only present here
the elements of a few cases that are sufficient to
suggest the range of organizational modes.

A frequently encountered case, in particular for
small projects, is characterized by a hermetic
and set hierarchy that is confined to the monop-
olization of the decision-making process by one

Môle Armoricain de Recherche sur la Société de l’Information et les Usages d’INternet.
http://www.marsouin.org

Page 5

person. Its workings are designed to delimit and
maintain distance, not only in space but also so-
cially, between the decision-maker and the con-
tributors. This configuration is always founded
on a singular story, that of an individual who
writes a software program and proposes it to a
file server. His product then is in contact with
many users, who in certain cases can be very nu-
merous, and some of whom do not fail to pro-
pose corrections, extensions or developments.
But the initiator of the program tries to maintain
the monopoly on the validation of further devel-
opments, and in some ways to relegate the other
developers to secondary contributions (reporting
errors, peripheral functions of the initial mod-
ule).

As long as the contributions remain limited and
occasional, the boundary remains clearly de-
fined between occasional contributors and the
initiator who is the guarantor of the product.
The latter can thus reinforce his legitimacy and
his recognition and maintain the monopoly, re-
sulting from his initial personal initiative, con-
cerning the free software program he created.
The multiplication of the number of users and
contributors, which is an indication of the grow-
ing success of the software, does not necessarily
modify this organization because the initiator
can form a small team by associating certain de-
velopers who are more regular or more signifi-
cant contributors who will then control the con-
tributions but also manage the contributors. An
example that is close to this system can be
found in the typographic composition software
called Tex, created and controlled by Donald E.
Knuth since 1978.

Another system corresponds to projects
launched and piloted, at least during the initial
stage, by a group characterized by personal re-
lations between people that share common ex-
periences or similar backgrounds. This social
and/or spatial proximity of the initiators is often
associated with a specific form of organization
the basis of which is the image they have of
themselves as IT professionals. This self-image
is all the more solid in that the development ac-
tivities are carried out in a professional environ-

ment. It then becomes highly effective and
structuring in terms of the sense of belonging to
a group and the definition of standards for the
quality of the products. This preoccupation with
the product introduces a pronounced differentia-
tion between developers and users who are con-
sidered in some ways as the profane. This bor-
derline is both distinct and permeable since the
group of developers is not closed: outsiders who
propose contributions that prove their technical
competence can enter after cooptation, often
confirmed by a vote by members of the group.
The latter organize among themselves the distri-
bution of the work, specialization in certain
tasks, and definition of responsibilities for cer-
tain modules of the software program. One illus-
tration of this is Apache software which is de-
veloped within the context of their professional
activities by a group of computer programmers,
systems administrators and software users of the
Web server of the NCSA that was formed when
the latter announced that it was dropping the
product and stopping maintenance.

The efficiency of this type of organization has
given rise to efforts to reproduce it with a core
of initiators that is not made up of individuals
but various institutions (companies, research
centers…).These consortiums, the foundation of
which can be encouraged by the government,
group together partners who know each other
through previous relations. The organization of
developments is even more structured than in
the case of a group of individuals. Here again
the borderline is very clear between users and
core developers, but the success of the first de-
velopments can lead to recruitment within the
consortium of new partners which serves to am-
plify the project and reinforce its credibility. We
can cite the example of the consortium Ob-
jectWeb (a middleware platform), established
by large French companies and research centers
that has expanded recently to include American,
German and Japanese companies.

A third form is organization around a central in-
stitution (a private or public company, a re-
search lab), that initiates the project, allocates
capital (in the form of salaried work), manages

Môle Armoricain de Recherche sur la Société de l’Information et les Usages d’INternet.
http://www.marsouin.org

Page 6

its development, and is in some ways the sym-
bolic proprietor. However, the project does not
remain confined within the framework of the in-
stitution and the circle of its employees as the
principle of producing free software is to pro-
vide the source code of the program and there-
fore the possibility for any user to make his per-
sonal contribution. The choice of developing
free software corresponds moreover to the de-
sire of the institution that initiates the project to
benefit from outside contributions. The institu-
tion that undertakes the project maintains, how-
ever, a central role in relation to the different
circles of developers. It exerts direct and perma-
nent control over the principal developers who
are paid employees and linked by contract to the
institution and organizes their activities.

As far as secondary contributions by users are
concerned, they are examined and evaluated ac-
cording to formal procedures. Generally, the
participation of outside contributors takes place
via websites and mailing lists devoted to the
software program and can be structured by hold-
ing conferences. The evolutions of the software
are thus all the more controlled in that outside
contributors who are particularly productive and
recognized by the decision-making body of core
developers can eventually be recruited by the in-
stitution responsible for the software. Groups
are therefore clearly segmented and the relations
between core members are encysted within a
professional relationship.

There are many examples of similar types of or-
ganization: research centers (the INRIA with the
Scilab project), universities (University of Paris
VII and Alliance software), companies (Zope
software developed by an American company of
the same name, CPS software developed by
Nuxeo in France). Sometimes a company that
edits a private software program decides to
transform it into free software (Open CAS-
CADE for Matra Datavision, Code_Aster for
EDF).

Finally there is the case of larger, more
widespread and heterogeneous groups that have
modified their organizational rules as the group
has grown in size to include members that are

dispersed geographically and have no links due
to social interaction. These groups of developers
can include several hundred members which can
create specific problems in regulating produc-
tion and inevitably problems preserving the very
identity of the group.

The initiators, who form the core, participate, in
varying degrees, in the same social networks
formed notably during school, but when the
group expands this community based on com-
mon experience disappears and the social cohe-
sion of the group is threatened. The growth of
the group is both the result of the success of a
product that interests many users, including de-
velopers, and the sign of a strategy of openness
on the part of the founders. In this case, the
longevity of the group and of the project is en-
sured by entry barriers in such a way that we can
witness a paradox: the groups that seem the
most open, i.e. the largest ones, are also the
most exclusive i.e. the most selective. Recruit-
ment is based on cooptation which ensures that
all the members share the same technical com-
petencies and values, as if this proximity of dis-
positions compensated for the distance between
the positions occupied.

The fact remains that this improbable equation
between the expansion of the group and selec-
tivity for new members implies that the software
produced is particularly attractive and creates
more interest than usual. Moreover, these mem-
bership barriers help maintain less division of
labor in the group and a sort of equality of situa-
tion or status so that any member can take
charge of the organization of a given module.

The Debian project can be considered an exam-
ple of this case (Auray, 2004, Conein, 2004). It
has over one thousand members that all have the
status of “developer-maintainer” with no hierar-
chy (a “project leader” elected once a year repre-
sents the project with outside partners but has no
internal functions). Only individuals, excluding
all institutions, can belong to Debian and mem-
bership applications are very numerous. There-
fore a long and formal procedure has been set up
that has several phases. Sponsorship by a mem-
ber of the group, a technical aptitude test, and a

Môle Armoricain de Recherche sur la Société de l’Information et les Usages d’INternet.
http://www.marsouin.org

Page 7

test of the candidate’s knowledge of Debian’s
philosophy guarantee that all the members share
the same set of values concerning free software.

These examples show that the solutions adopted
to organize distant production are highly diver-
sified and reflect the constraints inherent in the
projects developed, prolong the dynamics of the
project launch and express the orientations of
the initiators. The underlying issue of these vari-
ous organizational modes is constant: creating a
group made up of separate and distant individu-
als. To continue our exploration of this phe-
nomenon it is necessary to understand what
leads individuals to participate in this produc-
tion.

3. THE PROCESS OF INDIVIDUAL
COMMITMENT.

Most economic studies on the participation in
the production of free software reckon that com-
mitment is based on “classic” economic incen-
tives, through financial valorization later on of
the competencies of contributors to relatively
successful free software programs: getting an in-
teresting job, having privileged access to finan-
cial resources. This argument is based on the
fact that a system which identifies precisely the
contribution of each person to a free software
program allows a developer to build a reputation
that works as a powerful signal of competencies
that are difficult to evaluate directly (Foray,
Zimmermann, 2001, Lerner, Tirole, 2002). Our
empirical investigations highlight processes of
involvement that are more complex (cf. also
Corsani, Lazzarato, 2004) and tend to confirm
what Raymond wrote (2000): certainly “ some-
times the reputation acquired (…) can spread in
the real world and have significant financial
repercussions [through] access to a more inter-
esting job offer, to a consulting contract, or by
attracting the interest of an editor” but “this type
of side effect is rare and marginal (…) which is
insufficient as a convincing explanation”.

We have mostly met computer programmers for
whom the commitment to free software had
neutral, even negative consequences, from a ma-
terial point of view. An extreme case is that of
Ernest, a young computer programmer who left
a consulting job paid 400 € a day to join a SSLL
(Société de Services en Logiciels Libres, free
software company) where he could spend all his
time developing free software…for 1200 € a
month. Of course it could be argued that his in-
vestment will be profitable later, but it seems
that even when there are opportunities for finan-
cial rewards they are not systematically snatched
up as we can see from the experience of
Richard, manager of one of the first free soft-
ware companies during the boom of the dotcom
economy: “Imagine that in those days, like all
the other free software companies, we didn’t
draw a salary at all or we allowed ourselves the
minimum wage. We had companies like BNP
and AXA come to us and say: you’re a free soft-
ware company. Would you like to…? So we
said no. But we did hesitate a bit; there was a
way for me, because I held 49% of the shares, to
get several hundred thousand francs. And then
the Americans VA Linux and Linux Care came
to see us! And it was difficult to resist their
siren’s song. We held out only because we
wanted to create a different kind of company”.

Above all the validity of the hypothesis of moti-
vation through financial incentives is founded
on the premise of a contribution based on a cal-
culated choice, anticipating the long term effects
on a career. Yet, what our interviews show is
that it is a more progressive commitment, sus-
tained by a growing familiarity with program-
ming activity and the “social world” of develop-
ers (Strauss, 1978) and accentuated by memo-
rable experiences through which computer pro-
grammers build a sense of participation and in-
teraction with other free software developers. If
the individuals have their own, individualized
production, this is a link in the chain of coopera-
tion that, of course, organizes the specific tech-
nical know-how, but above all is personified in
work habits, categories of perception, universes
of discourse (Becker, 1988). Then, commitment

Môle Armoricain de Recherche sur la Société de l’Information et les Usages d’INternet.
http://www.marsouin.org

Page 8

to the development of free software is intelligi-
ble as a career choice.

The career of a free software develo-
per.
The interviews reveal several salient characteris-
tics of a free software developer’s work. It is or-
ganized in sequences that correspond to a suc-
cession of positions in the corresponding social
world. Mobility from one position to another is
the product of the encounter between personal
motivations and integrating social environ-
ments. Career advancement corresponds to be-
havior that becomes stable and public and a re-
inforcement of the links of cooperation (Becker,
1963). Career progress does not only mean en-
richment of technical competencies, but also the
accumulation of social competencies involving
ways of seeing and doing things, and codes that
belong to each social world (Hughes, 1958). We
have tried to identify the successive sequences
that correspond to different modifications: in the
behavior and activities of the individual, in the
perspectives and meanings he attributes to his
activity, and in the interactions and relations es-
tablished with other developers.

Accessing the source code: increasing techni-
cal competence.

Development of free software concerns only
those that are “passionate about IT” and who de-
scribe themselves as such i.e. people that not
only have highly specialized and esoteric knowl-
edge acquired through intensive use of IT tools
and almost always a college degree in IT, but
who also have a keen interest in programming.
This frequently leads to the desire to access the
source code of a given software program to cor-
rect the errors or make adaptations that were not
planned for certain specific situations. A typical
case is that of Stallman, the “inventor” of free
software in response to a printer that kept jam-
ming. He couldn’t modify the software that was
driving the printer in order to solve the problem.

A complementary source of motivation is the
desire to understand how a software program
works in order to learn programming. Thus Pas-

cal explains: “the awareness of the importance
of the phenomenon, of the importance of licens-
es, etc.., did not happen right away. That is to
say, at first what interested me was only to have
access, to be able to do things with it. I wasn’t
concerned at the time with cooperative develop-
ment […] We had a systems programming
course and I asked the teacher if by chance we
could have the source codes of the Unix shell to
see how it was made”. On the same note Ernest
told us: “when I started university, I said to my-
self: hey, at the university we’re going to have
to use Unix, so why not see for myself before-
hand how it works. And then there was Linux,
which is like Unix, which is free software that I
should be able to install on my computer”. Sym-
metrically, for many teachers learning computer
programming requires being able to show how
the programs are constructed.

Examining the source code of a software pro-
gram seems normal to most computer program-
mers. But it is impossible in the case of private
software. For this reason, computer program-
mers turn to free software in order to satisfy
their needs or their curiosity. This initial phase
of acculturation to free software is often encour-
aged by attending certain institutions, notably
universities, which are historically favorable to
free software. Even if this happens in an orga-
nized social context, it nevertheless is a re-
sponse at this stage to a personal and often occa-
sional need and it is disconnected from learning
the significance associated with free software
programs and from knowledge of how they are
produced.

Producing a contribution and distributing it
gradually.

It remains that this acculturation takes place col-
lectively, even if the geometry of the groups in-
volved is limited to students enrolled in the
same program of studies and their teachers.
Some of the members of these groups, who of-
ten are only familiar with one particular free
software program, are going to play a more ac-
tive role. This process is in general very pro-
gressive. It usually starts by visiting the website
of the software in order to follow its evolution

Môle Armoricain de Recherche sur la Société de l’Information et les Usages d’INternet.
http://www.marsouin.org

Page 9

and then is extended to participation in mailing
lists which is often indispensable because of the
initial difficulties involved in using free soft-
ware. This participation, which consists at first
of sending questions and can lead to proposals
of answers to questions written by other users,
enables the development of distant interactions
outside the initial circle of colleagues and
friends. The first contributions are often sec-
ondary: reporting bugs, translations and improv-
ing documentation…

These sporadic contributions and shared experi-
ences enable the integration of a group and fa-
miliarization with its discourse which gives
meaning to the actions carried out and can give
rise to the desire for those who are competent to
deepen their participation by proposing correc-
tions and writing more important modules. The
distribution of these first contributions is done
gradually, by reaching larger and larger circles
as the value of the production is recognized. The
first recipients are the closest peers, then more
distant colleagues but whom the contributor still
knows personally, and then distant peers acces-
sible through the website. This gradual distribu-
tion is a sort of initiation process combining a
probationary period for the novice and valida-
tion of his production. Paul describes his experi-
ence of commitment to typography software:
“Little by little, I became interested. There were
things that I found, notably as a Frenchman, that
didn’t work the way I wanted them to, on a ty-
pographical level. So, I started to develop things
and then to talk to colleagues I knew. It’s not
public; it’s exchanging between people who
know each other, let’s say on an interpersonal
level. And after, you submit that on public
servers and it’s recuperated by people that you
don’t necessarily know. But that’s a second
phase. That’s not when you start. Well, obvious-
ly, the first stuff you do, it’s like painters, you
don’t paint the Mona Lisa right away. So, you
don’t want to submit stuff that is going to be
criticized by more competent people. I think that
it’s after a while that you say: Hey, that might be
worth it. Finally, it’s usually colleagues who
say: You should submit that, really…”

In the first phases of a developer’s career there
is therefore a control mechanism through local
networks of the quality of his production. When
this is made public and available for all users,
the person who produced it becomes a bona fide
contributor because he has managed to partici-
pate in the reciprocal and social mechanisms of
the products that are the basis of free software.
He then assimilates the significance and the im-
plications of his behavior. This evolution is en-
abled by the nature and organization of free soft-
ware since the improvements that are proposed
and accepted can benefit directly all users, the
modified software can be used directly at no ad-
ditional cost.

But beyond the technical conditions, it is truly a
gradual and socially regulated process that al-
lows an individual to attain the status of free
software contributor. It then seems only natural
to allow others to benefit from one’s personal
contribution when one has benefited from the
work of other developers. Paul explains: “I start-
ed using it, I think like most other free software
users. It’s a thing that’s available free…Plus its
nice because it’s not the fact that it’s free but
that it’s open, that is to say, if their aren’t exact-
ly the functionalities you want in the software
you can add them, modify them, so obviously it
seems normal to share with the community of…
If you have added something that can be useful
for others, it seems normal that…You add it to
the common pot, it’s obvious”.

 Joining different groups and becoming a rec-
ognized professional.

The final step of the process, followed by a mi-
nority of contributors, consists in becoming
what could be called a free software “profes-
sional”, i.e. someone who collaborates on free
software projects during working hours, whether
he is specifically in charge of this task, exclu-
sively or not, or whether he manages to devote,
more or less officially, a significant number of
working hours to this activity. For this reason
the free software “professionals” have a greater
time commitment (in terms of length and stabili-
ty) and make up the “core” of the communities

Môle Armoricain de Recherche sur la Société de l’Information et les Usages d’INternet.
http://www.marsouin.org

Page 10

that ensures the regulatory, organizational and
structural functions described earlier.

This situation implies occupying a professional
position compatible with a continuous and sta-
ble commitment to this collective activity.
Working in these jobs can result in the gradual
transformation of an existing job description en-
abling the developer to devote a growing share
of his time to working on free software or the
search for a new job that is in keeping with his
participation in free software, sometimes after a
period on substantial unemployment benefits. In
the commercial world it can be the choice to
work for a free software service provider, the
creation of such a company, or more recently a
job devoted entirely or partially to free software
in a “traditional” IT company.

This professionalization is not only the institu-
tionalization or the recognition of technical
competencies. It corresponds to the acquisition
of shared symbolic references and the adoption
of specific values and beliefs that are the charac-
teristics of this social world. This commitment
to the development of free software is remuner-
ated, but it is also often a commitment in favor
of free software. There are thus strong beliefs
that motivate a quasi-professional commitment
in favor of free software, as expressed, for ex-
ample, by Alain who, after having worked for a
large IT company joined a free software firm
and currently holds a job in a university where
he devotes most of his time to free software:
“let’s say that for someone who has a technical
profile, free software is great because if allows
you to have control in society. You can have a
political role; you can try to change the world by
doing something in your field of competency.
Belonging to a free software association, doing
free software, is a concrete way of changing
things and to say to yourself that you’re not
wasting your life, you know. So that’s what
makes me tick. I think it’s the main motor for a
lot of people”.

On the other hand, the heterogeneity of the posi-
tions held by free software professionals sug-
gests a differentiation in their backgrounds, their
work and the significance that they attribute to

their jobs. This is the point that we are going to
examine now.

Contrasting reasons for commitment.
Free software developers have above all been
studied in terms of the diversity of their ideolog-
ical motivations. Blondeau and Latrive (2000)
reckon that they form an “improbable coalition”
made up of “neoliberals, libertarians, Third-
Worldists, and proto-Marxists”. The main thing
they have in common seems to be the will to de-
fend the freedom of software users and to thus
promote specific individual and collective uses:
“the freedom to use the program whatever the
usage; the freedom to study the functioning of
the program and adapt it to your needs; the free-
dom to redistribute copies and therefore to help
your neighbor; the freedom to improve the pro-
gram and share the improvements with the pub-
lic, so that the entire community benefits from
them” (Stallman, 1998). These different ideo-
logical currents converge in the battle against
monopolies, the biggest one being Microsoft. In
France, this type of justification can be found in
the existence of several associations that pro-
mote free software (APRIL, AFUL, FSF…), in
the vivacity of exchanges (not only technical)
that circulate on their mailing lists and between
these associations as well as the many events
that attract large audiences where both technical
objects are presented (free software) and lively
debates are held.

Thus the social world of free software is not
uniform and career paths can be very different.
We are going to explore this diversity of back-
grounds and the meanings that are associated
with them using material from four interviews
with professionals selected for the contrasting
points of view they present, the positions occu-
pied, the activities carried out, the values cham-
pioned, the beliefs defended and the network of
membership.

A selfless activity akin to public research.

Paul is a university mathematician. His first
contact with free software resulted from his
need for a typographic software program that

Môle Armoricain de Recherche sur la Société de l’Information et les Usages d’INternet.
http://www.marsouin.org

Page 11

could enable him to edit mathematical charac-
ters. However, as early as 1978, an American
academic named Knuth had developed Tex over
which he maintained complete control but
around which numerous software programs
were created, the most well-known being La-
Tex. LaTex is a free software program con-
trolled by a small but changing team (mostly
American in the beginning, its members are now
exclusively European) and made up of aca-
demics and computer programmers working for
scientific editors.

Paul, who was seduced by certain functionalities
of this English language software, carried out
some small developments to adapt it to the
specificities of French typography and published
them gradually. This is how he got in contact
with the person in charge of the multilingual in-
terface of LaTex with whom he collaborated
closely. Progressively, Paul found himself tak-
ing care of gallicization modules and then devel-
oping other modules. This activity takes up
more and more of his time in addition to in-
volvement and responsibilities in Gutenberg, an
association of French-speaking users of Tex.

His contribution to LaTex is closely linked to
his job: “Was it during my working hours or my
leisure time, it’s impossible to say. But after all,
even if it is during my working hours, if it’s use-
ful for the community it is no more useless than
ideas I can have about math. I don’t think that I
have cheated on the state if I did it during work.
And on the other hand, if I did it during my free
time, since I had fun doing it, and in return I
benefited from all the work the others have done
on a volunteer basis, I think that I haven’t been
cheated”. This interpenetration, even confusion,
between work and free time has two different
meanings that also converge. On the one hand,
the software activity is an intellectual activity
that should be part of “public domain”, “exactly
like research for the state that pays academics or
others to develop free software”. On the other
hand his work as a LaTex developer provides
him with satisfaction and quasi-professional
recognition that he defines as more “rewarding”
than research in mathematics: “In a way, I find it

more rewarding to develop something that peo-
ple use that to write a theorem that no one will
use or maybe 30 years after I die. I enjoy it and
its true that sometimes people tell me: Ah!
You’re the one that did that? I use it, I’m happy
to see what you’re like”.

Paul therefore defends a model of development
and publication of free software that he qualifies
as “user-friendly” and efficient because it en-
ables the production of better quality software.
He also compares it very clearly against the
market economy which according to him should
not include the production and distribution of
software because he sees the possibility of creat-
ing “different relationships between people.
People come to see me and they buy nothing. I
can help them and someone else will help me.
You can call it a barter economy; you can say
what you want, but it’s still much friendlier”.
His opinions are shared by all the members of
the community of LaTex users. Therefore he
was violently opposed to one of the people in
charge of Gutenberg that wanted to commercial-
ize a gallicization extension for LaTex, an act
which Paul considers as “betrayal of the spirit in
which we all work”. He personifies the categori-
cal rejection of the software market and the re-
fusal to use proprietary software and wryly
refers to himself as “sectarian”: “I don’t want
anything to do with it. Including the machines
that I administer at the university. If you want to
use Windows, you can have somebody adminis-
ter it, but not me. It’s against my principles. I
am for free software and therefore in my place
there is free software. If you need something
else, go see someone else. So, I do have a sec-
tarian side, I admit it”.

An alternative activity transposed, in the bu-
siness world.

Richard was passionate about computer pro-
gramming at an early age. After university stud-
ies in IT and jobs as a traditional computer pro-
grammer in several large companies he created
his own company in 1993 and developed “total-
ly proprietary” software used to transfer infor-
mation from Newton PDAs to company file
servers. At the same time he followed the devel-

Môle Armoricain de Recherche sur la Société de l’Information et les Usages d’INternet.
http://www.marsouin.org

Page 12

opment of Linux (he was an Apple developer
and “bought a PC just to see what it was”).

The event that was going to make him switch
definitively to free software was the decision by
Apple to discontinue Newton in the beginning
of 1998 which forced his company to shut
down: “that day I said to myself: I’m never
working on proprietary software again”. He de-
cided to redirect his business and create one of
the first companies in France (and one of the
only ones that is still independent) devoted to
systems administration and specific develop-
ments based on free software.

Since Richard managed the company he had lit-
tle time for development. However, he contin-
ued to develop in his free time a software pro-
gram for electronic voting and collaborative
publication for the internal needs of the compa-
ny. The project that he started “for fun” grew
bigger and he soon spent all his time on it, liv-
ing on unemployment benefits after leaving the
company after a drop in business. A first version
as free software was published and Richard cre-
ated a new company that commercializes ser-
vices related to this software program.

Even if Richard works in the business world, he
claims to be part of an alternative production
model. Moreover, he freely evokes his past as a
militant for the far left and considers free soft-
ware as a “political stake”: “It’s still the first re-
source, the first product that is not on the way to
being privatized but on the way to being social-
ized. We are privatizing water, soon air when it
will be polluted. Well, here is a thing that’s be-
ing created, and we say: look, this belongs to so-
ciety”. His political convictions are closely asso-
ciated with his professional life, as if they were
being carried out, transposed, and realized. Thus
the two companies belong to the employees and
the salaries are uniform. Furthermore, he has
promoted the setting up of a network of compa-
nies related to free software that have identical
values and that pool “all the information,
whether in accounting, finance, economy, cus-
tomers”. This sharing of information claims to
be a transposition of the organizational system
of free software to the world of business. Be-

cause just as Richard is convinced that “free
software sill supplant all the other software” be-
cause of the efficiency of its development sys-
tem, he thinks that a network of companies
owned by employees constitutes an economic
model that will win out in the long term com-
pared to traditional companies. He already
points to as proof the greater resistance of this
type of company to the recent crisis that rocked
firms built around free software.

An innovative activity that corresponds to a
commercial niche.

Bernard has a different approach to free soft-
ware. Even though he is also the founder of a
company based on free software, he insists on
the similarities with “traditional” companies. He
was very concerned with questions of network
infrastructure in his initial job as a computer
programmer in a company and witnessed the de-
velopment of the Internet “the very basis of
which is the development of free software”. He
was convinced that with the success of the Inter-
net free software would invade progressively the
different “layers” of IT and “slowly permeate,
through a viral process, the entire information
system of companies and eject proprietary soft-
ware from the market”. He deduced an in-
evitable progression of the distribution of free
software and saw in this activity the emergence
of a sector of development worth promoting.
But his hierarchy did not share his intuitions and
he decided with some former acquaintances that
were confronted with the same lack of under-
standing on the part of their employers to found
in 1999 a company based on free software and
which employs around 10 people today. The
company’s main business is the commercializa-
tion of system and network integration services
by using numerous existing free software pro-
grams. The employees participate in communi-
ties created around these tools and submit “cor-
rective patches” and software modules they have
developed. The company has created a free soft-
ware platform that enables all the applications
of a company to communicate between each
other no matter what their function or status
(free software or not).

Môle Armoricain de Recherche sur la Société de l’Information et les Usages d’INternet.
http://www.marsouin.org

Page 13

Bernard considers that “the strength of free soft-
ware today” is that it constitutes a “new way of
producing software”: “companies that haven’t
understood that yet are going to be in deep trou-
ble as time goes by, in that it’s the same as shar-
ing the cost of the R&D that there can be in the
software. Before, you needed to put maybe
twenty developers on line to obtain a soft. To-
day, you only need one person, or maybe two,
knowing that you have the community working
with you on the software”. If groups that pro-
duce free software operate “informally”, which
is “not reassuring at all for rational minds that
swear by the ISO label”, they are, according to
Bernard, “more innovative and more efficient”
than traditional organizations (“today it takes an
average of three days to correct a bug”).

He is proud to belong to the “economic sphere”
of free software that he compares against the
“philosophical sphere” that he deems
“sectarian”. For him, debate about free software
seems unproductive in relation to client compa-
nies (“free software is a problem between pro-
grammers”) and his pragmatic attitude has led
him to “insert free software in proprietary archi-
tectures” which shocked “free software purists”
(“we have a pact with the devil”). A client needs
to be “convinced that the free software presents
a financial and functional interest, integrating a
little bit of free software in his proprietary archi-
tecture and knowing how to show him that little
by little we can insert a maximum number of
free software programs in his network and infor-
mation infrastructure”.

A buoyant activity supported by intense mili-
tancy.

The first contact Pascal had with the source
code of a software program concerned a com-
puter game and allowed him to understand how
the game had been programmed. When he was a
student at the ENS (Ecole Normale Supérieure)
in France he learned about Minix, an operating
system developed by an academic and the
source code of which was public. Minix was
rapidly replaced by Linux which interested him
immediately and which made him aware of the
strength of a “truly cooperative model” com-

pared to development by an “isolated individual,
however talented he may be and whatever his
professional and intellectual competencies”. His
first contributions to free software happened
within the framework of his first job as a re-
searcher in mathematics: he proposed correc-
tions and developed improvements for the use
of a library program of mathematical algo-
rithms.

In 2000 he created a company that currently em-
ploys 15 people. The company develops appli-
cations for clients (in particular administrations)
by using a free applications server that was itself
developed with a free programming language.
Within this framework the employees propose
corrections and contributions to the platform
and the language on which the services are
based and help to popularize them. Using devel-
opments carried out for clients, the company has
created a “framework” that it distributes in the
form of free software.

In addition to managing the company and orga-
nizing the community created around this soft-
ware, Pascal has an important commitment and
has had important responsibilities in one of the
principal associations for the promotion of free
software, of which he is a founding member. As
he explains, “the aim at the start was to share
something that interested me from a technical
point of view, which I was even passionate
about, and then progressively, it became a pro-
fessional activity”. This job of “popularizing
free software, of preaching to managers and de-
cision-makers, of helping counter attacks that
can happen against free software” is comple-
mentary to his professional activity in his com-
pany that “is interesting because it encourages
the development of free software on all levels”.
He claims to have a pragmatic approach to free
software that after its initial successes will not
become established on work stations without ac-
cepting to integrate proprietary software, going
against those in favor of the exclusive use of
free software. He criticizes developers of free
software who are only preoccupied with the
technical perfection of their creations without
thinking about the needs of users. He is over-

Môle Armoricain de Recherche sur la Société de l’Information et les Usages d’INternet.
http://www.marsouin.org

Page 14

joyed by the progress in the way free software is
made that combines “both a business and tech-
nical approach”.

Finally the stories of Paul, Richard, Bernard and
Pascal are unique: besides the different process-
es they use to invest in the development of free
software, they attribute different meanings to
this activity carried out in disparate biographical
and institutional conditions. The sharing of a
minimum base of competencies (particularly
technical), of beliefs (in the efficiency of coop-
erative work) and belonging (to the same social
worlds that they call “free”) does not erase these
differences.

4. CONCLUSION.
“Free communities” constitute a paradoxical
world because it is extremely open via the Inter-
net and at the same time extremely selective and
distinctive because of the competencies required
of members. Our empirical results allow us to
conclude that there is a great disparity of princi-
ples and rules of social organization of these
groups on the one hand, and of spirits and sig-
nificance of belonging on the other hand. How-
ever this diversity comprehends a common
problem: how to produce a whole when we are
separated; how do we create cohesion over such
distances? The production of free software high-
lights specific work that can not be relegated to
telecommuting or distance work on the part of
the employees of the same organization, charac-
terized by the cooperation between distant
workers and free from the constraints imposed
by an outside or collective authority constituted
by being in a network.

We have tried to highlight the crucial stakes.
The first concerns the creation of cooperation.
We have identified the transversal mechanisms
that ensure control over the work and the work-
ers. Nevertheless we can find different interpre-
tations according to the history of the projects
and the groups that initiate and develop them.
The second concerns that creation of commit-
ments. We have identified general processes that
shape the career of a free software developer.

And this career follows different paths accord-
ing to the individual’s background and his social
status. Thus the reduction of the distance be-
tween members takes on multiple social forms;
and symmetrically belonging to a production
group requires multiple social links.

The successive, but separate, analysis of these
two dimensions enables us to note the tension
between, on the one hand, the collaborative ac-
tivity and the sense of belonging (to a group, a
world, a community) that results from this par-
ticipation and, on the other hand, the relational
distance and the individualization of commit-
ments that result from this isolation. The con-
clusions reached are temporary, but it appears in
any case necessary to cross these two dimen-
sions in order to obtain distinct figures of the
paradox we have called a “distant community”
and identify the segmentations of the free soft-
ware world organized around individual forms
of organization and mobilization.

BIBLIOGRAPHY.
Auray N., 2004, "La régulation de la connaissance : arbi-

trage sur la taille et gestion aux frontières dans la com-
munauté Debian", Revue d'économie politique, Numé-
ro "Marchés en ligne et communautés d'agents".

Becker H. S., 1963 (translated 1985), Outsiders. Etude de
sociologie de la déviance, Paris, A-M. Métailié.

Becker H.S., 1982 (translated 1988), Les mondes de l’art,
Paris, Flammarion.

Blondeau O., Latrive F. (editors), 2000, Libres enfants du
savoir numérique, Paris, L’Eclat.

Brooks F. P., 1995 (translated 1996), Le mythe du mois-
homme: Essais sur le génie logiciel, International
Thomson Publishing.

Conein B., 2004, “Communautés épistémiques et réseaux
cognitifs: coopération et cognition”, Revue d'écono-
mie politique, Numéro "Marchés en ligne et commu-
nautés d'agents".

Corsani A., Lazzarato M., 2004, La fuite par la liberté
dans l’invention du logiciel libre, Journal des Anthro-
pologues, n° 96-97, 127-150.

Di Cosmo R., Nora D., 1998, Le hold-up planétaire: La
face cachée de Microsoft, Paris, Calmann-Lévy.

Gensollen M., 2004, "Biens informationnels et commu-
nautés médiatées", Revue d'Économie Politique, Nu-
méro "Marchés en ligne et communautés d'agents"

Môle Armoricain de Recherche sur la Société de l’Information et les Usages d’INternet.
http://www.marsouin.org

Page 15

FLOSS, 2002, Free/Libre and Open Source Software:
Survey and Study, Final Report, http://www.infono-
mics.nl/FLOSS/report

Foray D., Zimmermann J.-B., 2001, L’économie du logi-
ciel libre: organisation coopérative et incitation à
l’innovation, Revue Economique, 52, 77-93.

Himanen P., 2001, L’éthique hacker, Exils

Horn F., 2004, L’économie du logiciel, Paris, La Décou-
verte.

Hughes E.C., 1958, Men and their work, Glencoe, Free
Press.

Jullien N., 2001, Impact du logiciel libre sur l’industrie
informatique, Thèse de doctorat en économie de l’Uni-
versité de Bretagne Occidentale, 315 pages.

Lang B., 1999, “Ressources libres et indépendance tech-
nologique dans les secteurs de l’information”, Tech-
nique et science informatique, 18, 8, 901-914.

Lerner J., Tirole J., 2002, “Some simple economics of
open source”, Journal of Industrial Economics, Vol.
52, 197-234.

Printz J., 1998, Puissance et limites des systèmes informa-
tisés, Paris, Hermès.

Raymond E. S., 1998, La cathédrale et le bazar, traduction
de Blondeel S., http://www.lifl.fr/~blondeel/traduc/Ca-
thedral-bazaar/Main_file.html

Raymond E. S., 2000, “À la conquête de la noosphère”, in
Blondeau O., Latrive F. (editors), op. cit.

Strauss A., 1978, “A world social perspective”, in Denzin
N (ed.), Studies in Symbolic Interaction, volume 1,
Greenwich, JAI Press.

Thevenot L. 1997, “Un gouvernement par les normes.
Pratiques et politiques des formats d'information”, in
Conein B., Thevenot L. (editors), Cognition et
information en société, Raisons Pratiques, 8, 205-242.

Tönnies F., 1887 (translated 1965), Communauté et socié-
té, Paris, Reitz.

Weber M., 1921 (translated 1971), Economie et société,
Paris, Plon.

LES BULLETINS RÉCENTS.
Année 2006.
6-2006. Pénard T., Poussing N. Usage d'Internet et capital

social.

5-2006. Masclet D., Pénard T. Pourquoi évaluer son par-
tenaire lors d’une transaction à la eBay ? une approche
expérimentale

4-2006. Dang Nguyen G., Genthon C. Les perspectives du
secteur TIC en Europe.

3-2006. Boutet A., Tréllu H. Appréhender les territoires
de la réalité et de la virtualité à travers la création d’un
site de « quartier » : l’exemple de « Couleur quartier »
à Kérourien (Brest)

2-2006. Martin L., Pénard T. Pourquoi les entreprises bre-
tonnes veulent-elles disposer d’un site Web ?

1-2006. Naccache P., Urien B. Du temps GMT au temps
BMT : une interprétation de l’échec de l’Internet Time
au regard de l’épistémologie réaliste critique.

Année 2005.
10-2005. Pennec S., Les techniques favorisant la mobilité,

équipements privilégiés par les personnes en situation
de handicaps. Présenté au colloque Les nouvelles tech-
nologies dans la Cité, Rennes, Université Rennes 1, 9
décembre 2004.

9-2005. Jullien N., Zimmermann J.-B. Peut-on envisager
une écologie du libre favorable aux nuls ?

8-2005. Jullien N., Zimmermann J.-B. New approaches to
intellectual property: from open software to know-
ledge based industrial activities.

Responsables de l'édition: Godefroy Dang Nguyen, Nicolas Jullien.

Contact : Nicolas Jullien

M@rsouin
GET - ENST Bretagne
CS 83818, 29238 Brest CEDEX 3

Marsouin@infini.fr
(0)229 001 245

Môle Armoricain de Recherche sur la Société de l’Information et les Usages d’INternet.
http://www.marsouin.org

Page 16

	Linking isolated workers and coordinating individual production.
	Different organizational systems, different social groups.
	The career of a free software developer.
	Contrasting reasons for commitment.
	Année 2006.
	Année 2005.
	Responsables de l'édition: Godefroy Dang Nguyen, Nicolas Jullien.

