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Abstract. The field of molecular biology is in a remarkably rapid period of change, as the 
genome sequencing projects and new experimental technologies have generated an 
explosion of data To analyze and draw insights from the vast amounts of information, 
biologists use a new generation of bioinformatics software tools, often working closely 
with mathematicians and computer scientists There are elements of both collision and 
convergence in these interdisciplinary encounters We conducted user studies with 
biologists engaged in investigating the molecular basis of disease. We describe several 
issues that arise in this collision/convergence of disciplines, drawing on the notion of 
boundary objects m-the-makmg. We provide recommendations on building technology 
for people whose work now sits at the crossroads of diverse and rapidly changing 
scientific fields. 

Introduction 

The field of molecular biology is in a remarkably rapid period of change. One 
notable characteristic of current genomics research is its increasing reliance on 
computational tools, including genomic databases (public and proprietary), online 
scientific literature, and data analysis software. This has led to immense interest 
and investment in bioinformatics information and tools. In addition to this 
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proliferation of information and tools in the genomics research community at 
large, some molecular biologists are generating huge amounts of information in 
their own labs using a new technology called DNA microarrays. Microarrays 
allow biologists to simultaneously probe the activities of thousands of genes 
under diverse experimental conditions, which is useful for investigating 
relationships within and across families of genes. Microarray experiments can 
produce terabytes of data, and it is simply not possible to analyze these data 
without significant computational support. It is likely that even larger data sets 
will arise as data are shared among many academic and industrial labs, just as 
genomic and other databases arose from distributed efforts. One of the central 
themes of computer-supported cooperative work (CSCW) is the study of 
collaborative encounters, especially when new technologies are involved. We are 
interested here in a collaborative encounter between disciplines, as biologists and 
computational experts work together to solve hard biological problems. 
Interdisciplinary collaboration raises challenging issues for practitioners and for 
technology designers who wish to support their work. 

Several years ago, a leader in the biotechnology industry declared that 
"biology is now an information science" (Williams, 1995). More recently, an 
article in the New York Times announced that " all science is computer science." 
(Johnson, 2001) These are provocative claims, and most biologists probably 
would not characterize the changes in their field in quite those terms. However, 
these statements do point to a'current tension for molecular biologists. 
Information models are not new to biology, but the work of biologists is changing 
through its contact with informatics (and vice versa). On the one hand, biologists 
are clearly working on problems that emerge from biology; they want to identify 
genes and understand how they function in living organisms. On the other hand, 
it is increasingly necessary to address these problems using information 
visualization, statistics, and other techniques for manipulating large amounts of 
data. But these techniques do not come ready-made for biological applications. 
To provide effective computational support, computational experts have to 
understand biological questions and work with biologists to try out new forms of 
analysis, using real biological data. Biological systems have a different character 
than computational or physical systems. They are less well-behaved; exceptions 
are as common as rules. It is harder to make simplifying assumptions than it is in 
the physical and computational sciences. Computational experts have to adapt 
their approaches to the way living systems work. 

What makes an interdisciplinary encounter difficult (and interesting) is that it 
involves different worlds, or different systems of meaning. People learn through 
their disciplines to formulate and solve problems in particular ways. They learn 
what counts—as a valid object of attention, a good method of analysis, or a 
reasonable solution. In CSCW, we are accustomed to thinking about people's 
different (and possibly competing) activities, responsibilities, locations, and work 
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styles But here we must also consider people's different ideas about what 
information is and what makes it reliable and meaningful. 

We emphasize here the interdisciplinary collaborations between molecular 
biologists and what we call "computational experts," but each of these categories 
is diverse in itself. Molecular biologists work in different problem areas that 
shape their perspectives in particular ways. Computational experts include (at 
least) mathematicians, statisticians, and software developers, each with different 
backgrounds and skills. These fields converge in bioinformatics and 
computational biology and in industry terms such as "biocomputing," which are 
emblematic of the hybrid character of this work. However, at this time most 
practitioners are still either biologists or computational experts, but not both. We 
focus here on the challenge of collaborating across this significant disciplinary 
boundary, while keeping in mind the many differences within each group. 

In some settings, biologists and computational experts work together directly 
on the analysis of experimental data, especially when the biologists are just 
beginning to use computational packages. Later, it is more common for biologists 
to encounter statistical methods and other computational techniques primarily 
through data analysis software. That is, the tools act as intermediaries between 
biologists and computational experts. Eventually, analytical techniques may 
become a kind of black box—something a biologist knows how to apply and need 
not understand in depth. But at this stage, biologists and computational experts 
must build on one another's knowledge and intuitions to develop workable 
methods for finding and interpreting patterns in biological data. Although the 
title of our paper, refers only to worlds colliding, we see an interplay between 
collision and convergence in the new biology. 

The central question addressed in this paper is: How should technology be 
designed for people whose work now sits at the crossroads of different 
disciplines? This is a situation in which the technology mediates between 
disciplines with different ways of looking at the world. What issues arise for 
participants in an interdisciplinary collaboration? How do people collaborate 
across disciplines when the ground is shifting on each side? To explore these 
questions, we discuss interdisciplinary encounters between biologists and 
computational experts. This discussion draws on a series of ethnographic 
interviews with research biologists and microarray designers. The discussion is 
lopsided in favor of biologists, since the issue of interdisciplinary collaboration 
emerged through a set of interviews with biologists which were originally meant 
to look at their particular technology uses and needs. 

We find the notion of boundary object (Star & Griesemer, 1989, Bowker & 
Star, 2000) to be particularly helpful in thinking through the issues raised in this 
example. In our view, it is not a perfect fit for the objects we see migrating across 
community boundaries, but that makes it even more interesting—it adds to our 
understanding of the idea of boundary objects, as well as of the objects held in 
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common' by molecular biologists and computational experts. We use boundary 
objects in discussing three issues that arise in this interdisciplinary collaboration: 
contrasting biological and computational stories, contrasting notions of biological 
and statistical significance, and changing work practices. We end with a 
discussion of software design implications. 

Method 

Our group at Agilent is engaged in software research to support molecular 
biologists, with a particular focus on the problems involved in disease and drug 
discovery. To ground our group's software design projects in an understanding of 
users' needs, we conducted a series of ethnographic interviews with molecular 
biologists. Most of our interviews (about twenty) took place in a single 
laboratory at the (U.S.) National Institutes of Health (NIH), where biologists are 
investigating the molecular basis for different types of cancer. We also 
interviewed several biologists and computational experts in university labs and 
local biotechnology companies. In addition, we interviewed colleagues in our 
own company who were trained as molecular biologists and who now work as 
developers of our company's microarray technology. 

We conducted our interviews in the biologists' labs. The interviews were 
open-ended and informal; we asked the scientists to explain to us how they 
formulated and carried out their research projects and what they were learning 
from them. In most cases, people turned to their computers and walked us 
through their data, showing us which software tools they used, how each tool fit 
into their analytic strategy, and how they interpreted the information presented in 
each tool. For the most part, we chose to talk with people who used microarrays 
in their experiments. Agilent makes microarray products (including arrays, 
scanners, and analysis software) and we were interested in how people handle the 
large volumes of data generated by microarrays. 

Microarrays in Molecular Biology 

Molecular biologists seek to identify and understand the relationships of genes, 
proteins, and pathways in living organisms. An increasingly important tool for 
research in molecular biology is the DNA microarray, or gene chip. Using 
microarrays, biologists shift from examining the way a single or a few genes 
change as cells move from state to state to simultaneously monitoring thousands 
of genes across different conditions. Microarrays are a new technology, and only 
a few labs have experience in using them (DeRisi et al, 1996) The NIH lab we 
visited (which is among the earliest microarray users) has been using microarrays 
for about four years. During this time, members of the lab have developed basic 
protocols for microarray use and established lab-wide software standards. 
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A microarray gene expression experiment starts with an array and a sample. 

The array is a glass slide on which thousands of probes have been deposited in a 
grid-like arrangement. Each probe consists of a small sequence of DNA that 
complements a particular gene from a particular organism. Many researchers at 
the NIH lab use an array with about 6000 probes that represent a cross-section of 
the 30,000 genes in the human genome. 

To perform an array analysis, researchers collect samples of the biological 
materials whose genetic activity they want to study. For example, a sample might 
consist of tumor cells from cancer patients or cells from a particular kind of 
tissue. Then RNA is extracted from the sample, the RNA molecules are produced 
by active genes and are specific to those genes, so they indicate which genes are 
expressed or "turned on" in a cell. The RNA is used as a template for 
synthesizing a form of DNA called complementary DNA, or cDNA, which is 
used because it is more stable than RNA. This cDNA is in turn labeled with a 
fluorescent dye. Then a solution containing these labeled molecules is distributed 
over the slide containing the probes. If the sample contains cDNA that matches 
any of the probes, the cDNA will bind (or hybridize) to those spots on the array. 

The slide is scanned and the amount of fluorescence is measured at each spot 
(a measurement which requires considerable data processing in itself). The 
different levels of fluorescence at different array locations give information about 
which genes are being expressed in the sample and at what levels. The brighter 
the fluorescence, the more cDNA has attached to the probe, so the more active the 
gene corresponding to that probe must be in that sample. Each time a sample is 
hybridized to an array, thousands of data points are generated. It is a common 
practice to include labeled reference material along with the sample, so each of 
the thousands of probes actually gives two data points—one for the experimental 
sample and one for the reference. Relative gene expression patterns are 
determined by comparing the expression levels in different experimental samples 
to the same reference sample. 

Once the data have been generated, researchers use a variety of tools to look at 
them, including spreadsheets (for basic number-crunching), off-the-shelf database 
programs (to query the data along different dimensions), and special-purpose 
bioinformatics tools (for more complex algorithms to find patterns in the data). 
Each of these tools is a way of filtering the thousands of data points, to identify a 
small number of genes (usually fewer than a hundred) that seem to be interesting 
and worth looking at further. Then the biologists usually consult genomic 
databases (such as GenBank) and scientific literature databases (such as Medline) 
to see what is already known about these genes. 

There are many different kinds of gene expression experiments that can be 
done using microarrays. Though we cannot characterize a typical experiment, we 
can give examples of the projects being done by researchers in the NIH lab 
Several researchers are trying to find genetic markers for particular kinds of 
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cancer For example, certain cancers are quite rare and difficult to diagnose. By 
analyzing the gene expression activity associated with similar cancers, researchers 
hope to find a set of genes whose pattern of expression is unique to each cancer. 
They hope these unique genetic profiles could be used to develop diagnostic tests. 
Other researchers are trying to learn the functions of particular genes. They can 
modify a gene of interest in a cell line and then take snapshots of more general 
gene expression activity at several time intervals after the modification. They 
hope to figure out what the "downstream" effects of that gene are, to begin to 
piece together the biological pathways in which it participates. An important 
aspect of using microarrays is figuring out how to translate research questions 
into choices for arrays and samples in such a way that the data analysis will yield 
useful answers, in light of current data analysis approaches and tools. 

There is a good deal of formal and informal collaboration among people 
working on related projects. Visitors and post-docs share lab space in very tight 
conditions—each person has only a few feet of lab bench and nearby desk space 
(with computer) People are aware of each other's projects, especially where 
there are overlapping interests in particular diseases, and they exchange 
information and advice about lab protocols and data interpretion. Most papers are 
co-authored by a long list of researchers. 

There are two people in the NIH lab we visited who play a special role in 
supporting the molecular biologists in their microarray experiments. These 
people (one biochemist and one image processing expert) choose which software 
tools should be used in the lab, teach people how to use them, consult with people 
on data analysis for particular experiments, and write custom software when 
needed. This kind of contribution has been well-documented in the human-
computer interaction literature (Mackay,1990, Gantt & Nardi, 1992, Williams, 
1993). We draw attention to it here because it is a vitally important part of the 
interdisciplinary collaboration between biologists and computational 
experts—most of the biologists we interviewed emphasized that they could not 
have done their experiments withouUhe help of their on-call consultants. 

Boundary Objects In-the-Making 

The biologists we interviewed had adopted a large number of computational 
resources, especially since they had begun using microarrays. Each person had 
assembled a working set of information tools and services to help them 
throughout the course of their research projects. Despite the biologists' adeptness 
in using their tools, it was clear from our conversations that there were aspects of 
these technologies that puzzled or bothered them at times, as we will describe in 
more detail in the following sections. There is something about the way these 
information tools work that seems a little askew—they don't quite fit the way 
biologists think about their world. We want to look more closely at this problem 
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of fit, and we find the concept of boundary object helpful in thinking about the 
gaps left open by bioinformatics technologies. 

Star uses boundary objects as a way to talk about objects that circulate among 
different communities of practice, taking on distinct local meanings and uses in 
each one (Star & Griesemer, 1989, Bowker & Star, 2000) (A community of 
practice is one in which people develop a sense of shared activities and 
membership through sustained participation (Lave & Wenger, 1991).) A 
boundary object retains some common structure and is recognizably the same 
object across communities, but it has "different meanings in different social 
worlds" (Bowker & Star, 2000, p. 297). In the examples of Bowker and Star, 
boundary objects travel well and facilitate collaboration across communities in 
part because their local differences don't have to be confronted or reconciled. 

The mobility of objects such as software tools, algorithms, and data sets allows 
biologists and computational experts to cooperate on solving analytical problems 
in molecular biology. However, several questions arise: Do computational 
experts and biologists agree on what counts as important in data? If you translate 
biological data into computational data and perform mathematical operations on 
them to find patterns, are the results biologically meaningful? Are anomalies in 
one domain also anomalies in the other domain? How much common structure is 
retained, and to what extent do local differences of interpretation matter? The 
interdisciplinary collaboration would be more comfortable if analytical tools and 
data worked as boundary objects whose local interpretations were not called into 
question, but this is not quite the case. 

Some features of this collaboration depart from the boundary object scenarios 
described by Bowker and Star. First, this is not a situation in which people in 
different communities of practice are focused on their own activities and 
problems. On the contrary, it is a more intimate collaboration, in which people 
from different disciplinary communities are trying to work together on a common 
problem. They must enter into each other's worlds, shift their own practices, and 
accommodate unfamiliar points of view. They have to achieve a kind of double 
vision, to see common objects both from their own disciplinary perspective and 
from the perspectives of their colleagues. Second, Bowker and Star point out that 
boundary objects arise over time in durable cooperative arrangements. However, 
the interdisciplinary encounter between biologists and computational experts is 
new and not yet stable. It is far from a durable cooperation, although it may grow 
into such a relationship over time. 

It may be more useful to look at the objects in this interdisciplinary 
collaboration as boundary objects in-the-making—they are circulating across 
communities, but sometimes it is necessary to confront and reconcile their 
different local meanings. What we want to draw attention to here is that these 
unstable objects can still work to facilitate collaboration across 
communities—they give people common ground for discussion and negotiation. 
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The interdisciplinary collaboration we describe has features in common with 
several earlier projects in the CSCW literature Bannon and B0dker discuss the 
issues of designing and using "common information spaces" (Bannon & B0dker, 
1997). They include situations in which cooperative work is mediated by a 
database, since the person who records information in a database and the person 
who accesses that information try to understand each other's context. Bannon 
and B0dker point to the tensions and tradeoffs in creating common information 
spaces, and they draw attention to the importance of human mediators in helping 
people from different communities make use of common information. As we 
have mentioned, we also found that human mediators play key facilitator roles. 

Van House, Butler, and Schiff describe a digital library project that involves 
sharing environmental planning data sets (mostly measurement data) on the web 
(Van House et al, 1998). They describe users' concerns about the ways data 
might be misused or misunderstood when it is dissociated from its original 
contexts and communities of expert practitioners. Harper reports on an 
ethnographic study of "missions" sent by the International Monetary Fund to 
member countries, during which economists gather and analyze data and prepare 
reports on national economies (Harper, 1997). His fascinating study shows how 
meetings between the visiting economists and their hosts help to make the 
numbers "count. " These meetings are a "social process that converts speechless 
numbers into ones that have a voice" (Harper, 1997, p. 363). Through 
conversation and negotiation, "raw numbers" are converted into meaningful and 
useful information. As in Harper's case, we must pay attention to whether and 
how numbers are adopted, not just how they are generated. 

Each of these projects raises the important issue of trust and reliability when 
information objects travel across communities of practice. We emphasize the 
complexity of trust in the sections below, since it emerges as a central theme of 
the interdisciplinary collaboration between biologists and computational experts. 
We do not mean to imply that people are suspicious of each other, but rather that 
both biologists and computational experts are still trying to bring their problems 
and methods into alignment, so they can both feel confident of their results. 

Comparing Stories 

As we listened to molecular biologists talking about their research, we were 
struck by how often they described their activities in terms of telling a story 
Each story is an interpretive framework—a way of making sense of experimental 
data and situating it in a context of earlier work By looking at how these stories 
are put together, we can see some of the strangeness bioinformatics tools have for 
biologists. In this section, we revisit our account of microarray experiments to 
look at collisions and convergences in biological and computational stories. 
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The stories told by molecular biologists usually focus on how genes and proteins 
interact with other genes and proteins in biological pathways (such as energy 
metabolism or cell growth). When genes are expressed, they encode proteins In 
turn, proteins can catalyze biochemical reactions in the body, provide cell 
structure, transport nutrients, or regulate further gene expression. Molecular 
biologists explain biological phenomena by narrating the interrelationships of 
genes and proteins. 

As we have discussed, microarray experiments yield data about the relative 
expression levels of genes under specific conditions, such as which genes are 
expressed in a set of breast tumor samples. Usually, the researchers in the NIH 
lab examine a series of samples using their arrays and cross-compare the results. 
The data live in huge spreadsheets, where each of the 6000 rows corresponds to 
one gene and each column corresponds to an experimental condition; it is not 
uncommon to have 20 to 40 experimental conditions. It is very challenging to see 
the traces of biological phenomena in this sea of numbers. People are looking for 
patterns, usually quite subtle, that imply interrelationships among the genes. 
They hope to infer a network of cause and effect relationships among 
genes—including the coordinated effects of multiple genes acting together—since 
such networks are the basis of biological pathways. Deciphering pathways is 
what most molecular biologists refer to when they speak of "putting together the 
story. " 

Biological stories are told from diverse points of view. When biologists search 
the scientific literature for references to a gene they are investigating, they are 
most interested in what is known about the gene in a context similar to their own. 
But they are likely to come across references to quite different contexts, which 
tell a different story about the gene—in fact, the gene might have quite different 
functions across these contexts. For example, a prostate cancer researcher might 
find information about a gene of interest, but it is told from the perspective of a 
biologist studying liver function. Or two or more researchers may independently 
discover the same gene, but refer to it by different names. Since there is a pride 
of ownership involved in naming a gene, it is not easy to standardize gene names. 
Biologists have to be aware of the different aliases for a gene under study. 

In general, biological stories need to accommodate multiple hypotheses and 
alternative explanations, which change as new data are obtained. Biologists use 
bioinformatics tools or literature searches to generate and check out their ideas, 
and they find it challenging to organize and manage the links between 
computational results and the biological stories they support. 
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Computational Stories 

There is no way to analyse spreadsheet data in thousands of rows and a series of 
columns without some computational help. Biologists use bioinformatics tools to 
filter, sort, and find patterns. That is, they use tools that put together a 
computational story for those data. 

One important character in a computational story is a cluster. The clustering 
algorithms used in bioinformatics tools work like document clustering—they 
reorganise a large set of elements into groups whose elements are somehow 
similar to one another. One row of a spreadsheet (the expression levels of a 
particular gene over a number of experimental conditions) can be thought of as an 
expression "profile" for one gene, and different gene profiles can be compared to 
see how similar they are, based on mathematical notions of similarity. Sets of 
genes with similar expression profiles are grouped together in clusters. In other 
words, the clustering algorithm surveys the numerical values of expression levels 
and looks for non-random correlations. If clusters have biological as well as 
mathematical meaning, then each cluster describes a group of genes that may be 
co-regulated, implying their involvement in the same biological pathway. 

People often combine clustering with visual inspection Gene expression 
levels are encoded into shades of red and green, and biologists look at array data 
that is mapped in this way to see if they can see patterns in the arrangement of 
colors. They can use clustering algorithms,to reorder the data, to allow for new 
patterns to emerge through visual inspection. 

Double Vision: Making Stories Converge 

Although clustering tools are common for molecular biologists who use 
rrucroarrays, we found that biologists are reluctant to trust the clusters identified 
by the tools. Biologists draw a sharp distinction between computation and 
biology and do not take for granted that meanings can be translated in a 
straightforward way from one domain to the other. Nor do they trust the findings 
they read in the scientific literature when these results are based on mathematical 
analyses that the paper's authors don't appear to understand. 

Many of the biologists we interviewed try to adopt a mathematician's 
perspective, to look into the inner workings of the algorithms and convince 
themselves that each step makes sense from a biological perspective. This brings 
the biologists into contact with someone else's unfamiliar way of looking at 
things. Consider this biologist's description: 

I think we spend two thirds of the time thinking about the biology and a third thinking about 
this kind of logic which feeds into it eventually Because it makes you—it determines whether 
or not you can believe what all these computer manipulations are telling you 
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We are struck here by the alien quality of "this kind of logic." The 
computational logic "feeds into" the biology eventually, and there is no way to 
get to the biology except through this logic. Despite its strangeness, biologists 
have to work with it to make the different stones converge. 

There is an ironic note to the labor-saving possibilities of bioinformatics 
analyses. Although in principle these tools reduce analytical effort by suggesting 
mathematical relationships that may be useful, biologists tend to run through extra 
analyses so the analyses will check up on each other. For example, they may run 
a clustering algorithm repeatedly, using different similarity measures to see if the 
sets of clusters that come up are consistent. If they get the same results from 
several different methods, they have some confidence that the results may be 
biologically significant. Of course, checking results and calibrating tools are 
always part of good scientific practice. But in this situation, biologists 
emphasized to us their uncertainty about how much cross-checking was 
enough—how much it would take to make the computational patterns biologically 
convincing. 

We emphasize that microarrays are new, and both the biologists and the 
computational experts are unsure of how to bring their disciplinary strengths 
together. Both are learning, and both are nervous about the prospect of producing 
unreliable findings. A mathematically-derived set of clusters in gene expression 
data is a new kind of common object that emerges through interdisciplinary 
collaboration, belonging to both disciplines and not fully to one or the other. The 
analytical algorithms are themselves a topic of research, and they continue to be 
tested and revised with new sets of biological data. A computational expert at 
the lab, whose skills are very much appreciated by his biologist colleagues, talked 
about some of his doubts' 

When you run the program and see all those relationships, it tends to mean something but 
basically means nothing So you don't want to make a big story out of nothing You really 
want to make sure that everything goes smooth, as if there is a real story there So that part of 
the abstraction is usually—we are all learning and trying to figure out 

For both computational experts and biologists, it is not enough to have a story 
that makes sense only in one perspective or the other. It is important for the 
stories to converge, since biologists rely on computational tools in sorting through 
their data. One of the biologists talked in similar terms when he described a 
conversation with some mathematicians about a new algorithm: 

One caveat they pointed out, this analysis is susceptible to meaninglessness. They showed us 
some data that just didn't correlate with anything—no clinical characteristics, no laboratory 
measurement, no demographic information, nothing Instead their strongest association was 
with a particular date in the year, of all things It turns out that Cluster A was done prior, 
statistically significant So what happened7 I'm willing to go that route, because they may 
have had some technical problems, we don't know What we can do—we can then look at the 
genes and we want the genes to tell us . " 
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He wants to be able to trust the convergence between biological and 
computational features of the data (so-the genes will be able to speak), but he is 
also realistic about the possibility of misalignment. 

Stories as Boundary Objects 

Stories are a kind of boundary object. As they travel across communities of 
practice, they are more or less successful in helping communities to collaborate 
with one another. They work to focus people's collective attention on something 
of common interest: an account of how genes seem to be related to one another. 
In the interdisciplinary encounters between biologists and computational experts, 
these stories are rather unstable—it is hard to be sure whether a particular story is 
a good one or not. As boundary objects m-the-making, stories about genes based 
on computational analysis are subject to scrutiny, and their different 
interpretations call for explanation. But even in these circumstances, the stones 
work to facilitate the collaborative analysis of experimental data across 
disciplines. 

Stories are boundary objects between biologists, as well as across disciplines. 
They circulate through different biological contexts, and as people collaborate on 
data analysis, alternative stories come into play. As one post-doc said, "Most 
people in the lab analyze each other's data and recognize things. Because no two 
people had the same training." When biologists look at data, they look for 
familiar characters—genes they know well from other projects and other contexts. 
A gene that is quite unknown to one biologist may be an old friend to another. In 
general, biologists have to look through and understand other people's points of 
view (both biological and computational) to compose a good biological story. As 
one scientist at NIH put it, they try to develop a "consensus hallucination as to 
what the data is trying to indicate to us," pulling together the knowledge and ideas 
of people with diverse experience and expertise. 

Comparing Biological and Statistical Significance 

One of the central tensions that emerges in the interdisciplinary work of biologists 
and computational experts is how to decide which data are biologically 
significant. The discipline of statistics has developed mathematical methods for 
establishing significance in data analysis. Biologists use statistics, but they also 
rely on experimental know-how and a sense of what is biologically interesting 
and believable. Sometimes their approaches and criteria lead in different 
directions than those of computational experts. 

Deciding what is significant is a way of organizing what can be seen. When 
data are labeled significant, they become more visible—they count. When data 
are labeled not significant, they become invisible and no longer receive attention 
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Notions of significance are deeply embedded in many data analysis tools; this is 
not a concept that can be readily customized for different users. In this section, 
we discuss how molecular biologists grapple with differences between statistical 
and biological significance, as they try to tease apart the signal and noise 
generated in biological experiments. 

Outliers and Anomalies 

To make sure that only good data are presented to users, software tools often set 
high statistical cut-offs on measurement data (such as the level of signal intensity 
required to indicate the influence of a gene). However, biological phenomena are 
often subtle and may be lost when statistical cut-offs are too stringent. Statistical 
assessments of significance rely on looking at relatively few variables over large 
samples. But there are many dimensions of interest in biological array data, 
which may not all have the large number of measurements needed by traditional 
statistical methods. These data call for new kinds of analytical approaches from 
computational experts. Also, it is important to consider what constitutes a new 
finding: an effect that is slight but unexpected can be much more informative than 
an effect that is pronounced but already understood by biologists. 

Many biologists talked about wanting to look around the edges of their tools' 
statistical cut-offs, to see what is "under the shadow." They want to see shades 
of gray, rather than just black and white. When they can't see past a statistical 
wall, it raises concerns about the integrity of the data analysis. It is especially 
difficult to figure out how to handle outliers—those bits of data that don't seem to 
line up with the rest. The problem is that there are different ways to account for 
the categorization of data as outliers. They might be effects of the mathematical 
algorithms—perhaps the algorithms rendered marginal some data that are worth 
paying attention to biologically. (An odd variation in the pattern might be just 
the thing to look at.) Or an anomalous piece of data might be the outcome of 
unintentional variations in the experimental set-up, such as a smudged slide. Or it 
might be just a sideline to the important biological story whose patterns are 
beginning to take shape in the data In this case, biologists want to set it aside. 
Depending on the explanation, outliers are either extra data that can be safely 
discarded or missing data that should not be discarded. Of course, biologists 
don't know how to explain outliers unless they take a close look at them, which 
may be difficult with tools that make them hard to see. This is not a problem of 
biologists not understanding statistics; they do understand them. It is rather a 
difference in how to interpret and work with categories such as "outlier." 

Here is how one biologist discussed outliers in his data set: 

So what defines that data set, and what our gut feeling about it was that I think it was nice that 
there were these overlaps of genes, and I think if you shrink the data set down loo much where 
you have only one copy of the gene, if it shows up and it's out there in the middle of nowhere 
and there's nothing questionable around it, you don't know if it's a red herring or if it's just the 
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most important gene That's why it should be looked at . How do you look at it9 These are 
distributed here because they're meaningful and .that's the reason they're here9 Or were they 
distributed here as some type of statistical variation9 I think that if a chip has multiple 
homologs [variants] for a certain gene, you start becoming more comfortable with these 
outliers 

The biologist is pointing here to the useful strategy of taking statistical 
significance into account in his experimental design. In particular, he finds that it 
works best if there are variants of the same gene on the array. When the sample is 
hybridized to the array, the expression levels for that gene should be about the 
same for each of the variants. If that turns out to be true, then the biologist can at 
least feel assured that the result is correct, even if it can't yet be explained 
biologically. Here is a description from another biologist along the same lines: 

So as your sample size increases, the need to view the actual image [fluorescence data] 
decreases But these experiments are only one of the two ways people are doing things The 
other way people are doing things is they are taking one sample and doing it in triplicate and 
looking at the genes that change over that series of experiments, so in that case your N is 
somewhat smaller. Small is relative, whether it's small or not What's too small ? 

In this case, the biologist describes a strategy of replicating sample runs rather 
than replicating genes on the array, but it's the same idea of building in 
redundancy. Yet even with redundant designs, it is still hard to know how much 
is enough. 

Flexibility and Rigidity 

Biologists in the NIH lab are also attuned to the material features of the 
microarray technology and how these might affect their statistical analyses. The 
microarray technology includes printers and scanners, and clogs or other 
problems can lead to a "dirty" hybridization, where one portion of the array is no 
good Here, a biologist points out that analysis tools can't always cope with 
situations like this: 

You can have non-specific hybridization going on across the whole slide, which was missed by 
the analytical measurement What you can do is, you can look at the ratio outliers to see if 
they're uniformly distributed or non-uniformly distributed The histogram and scatterplots 
will give you some idea also, but it's the whole picture, it's all the parts And likewise you can 
also look for some dirty hyb. It could be confined to one quadrant or it could be the whole 
thing If it's the whole thing, the statistics usually tell you, but if it's a portion of the array, the 
statistics sometimes don't pick it up 

In circumstances like this, it may be the biologist who can judge what is going 
on and the statistical tools that have limited information. In this case, the 
biologist wants to be able to tell the tool, rather than the other way around—for 
example, to mark off one quadrant as unsalvageable, while keeping the remaining 
three quadrants in the analysis. This is a complex scenario; in some 
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circumstances, several different tools used in combination can elucidate the 
problem. However, sometimes the whole hybridization has to be thrown away. 

Biologists in the NIH lab draw a contrast between biological and 
computational styles of thinking in terms of flexibility In their view, statistics 
are unnecessarily rigid. As we watched people using their information tools, 
people offered a number of suggestions for how the tools could be made more 
usable. Most of the time, the suggestions had to do with loosening up restrictions 
and making hard-wired operations tailorable. What about letting the user adjust 
the angle that separates clusters, or allowing more cross-experiment comparisons? 

Besides offering usability feedback, the biologists' comments reflected more 
generally on their sense that they wanted to steer the tools differently, as 
biologists. One person explained as he showed us an operation he wanted to do: 

So if I'm the biologist and I want to say: 'I think for this experiment, I think these spots are 
important and also these, only these things are not important so I want to draw a line like this ' 

We notice in these comments how the biologist claims his authority to direct 
the tool. He says, "if I'm the biologist," because he wants to remind us that the 
biologist should be in charge. This same person named the central issue as one of 
interdisciplinary differences: 

Sometimes I find that the statistics thing, the hard statistics world, is not well applied to 
biology because we're not that rigid somehow Because life is always very flexible So it's 
really hard to say, "Cut-off is this " What about the red over there'' So that's the thing we deal 
with constantly 

It is important to keep in mind that there are strengths in the statistical analysis 
tools, as well as uncomfortable mismatches. Biologists do want to let the 
statistics inform the biology, as well as the other way around—the analytical tools 
have capabilities they want to take advantage of. The design problem is to find a 
balance that works to suggest new directions and at the same time support 
biologists' ideas about what makes sense biologically. 

Changing Work Practice 

We have discussed the different stories and types of significance produced by 
biologists and computational experts as they work with data. In this section, we 
turn to the question of how microarray technology rearranges lab practice. 
Microarrays are a disruptive technology—they perturb the customary rhythms of 
the research projects in which they are used. 

Molecular biologists in the NIH lab have experienced a change in the pace in 
their experimental work when they use microarrays. There is a difference in what 
people do and for how long. In particular, data analysis has assumed a much 
larger part of the picture, to a degree that was unexpected by the biologists. 
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Consider this account of a visiting biologist in the NIH lab, in answer to a 
question about how long she had been working on her project' 

Biologist Oh yeah! Almost two years since I started doing the first hybs I think maybe this 
case is a bit unusual because I had a very limited number of samples, and they're so precious I 
had to be sure that it was going to work, if I was going to do a hyb I was actually working in 
[my home labj, and I just came here to do these hybs. We stupidly thought that I was going to 
do it really quickly and then just go back home. It didn't work that way. So I decided to come 
back—so there was actually a break, when I went home and stuff. And then we did this with 
fewer samples and started doing MDS [multi-dimensional scaling] plots and everything We 
knew that we had to do more tumors, so I did them last—oh, around Christmas, I guess But 
since then, and even meanwhile, when we didn't have that many samples, everybody was 
working on the data frames, looking at them in different ways It's definitely the largest 
portion of the work, analyzing the data. 

The project is not neatly divided into temporal phases. The biologist and her 
colleagues continue to explore the data produced in early hybridizations while she 
looks for more samples to use in later hybridizations. The insights they get from 
these plots and clusters suggest new things to try with the next sets of data. For 
this biologist, the work of "analyzing the data" seems to encompass more and 
more of the project. 

We are interested in how people experience these changes. One of the 
biologists in the NIH lab described data analysis as a kind of "downtime": 

I guess one consequence of working out there on the edge—there's a lot of downtime in the 
sense that—what do I mean by downtime You know, when you're used to working at the 
bench 8, 10 hours a day, there's no waiting at the bench Things happen, there's a protocol, 
there's a script you have to follow In some cases with this data analysis, we're waiting for it 
You know, it's a process, and we're all willing participants I'm a biologist, a human 
geneticist by degree, and actively involved in the bioinformatics and the data analysis, and 
that's where we want to go 

There is considerable ambivalence in this biologist's story of what it feels like 
to be working out on the edge. The time away from the bench is unstructured 
(there's no protocol or script to follow), and he feels it as downtime, a time when 
things are not happening, rather than a busy and productive time. This particular 
biologist is notable for the breadth of his tool set But more options lead to less 
certainty about which paths or protocols he should follow, and some of the 
analysis options take a very, long time to run. The biologist is convinced of the 
utility of microarrays and plans to continue using them in future projects. 
Microarrays, with their huge data sets and attendant data analysis tools, are 
"where we want to go. ", But microarrays also interfere with the usual protocols 
for lab work and experimentation, and biologists do not yet have stable new 
protocols that capture the particular rhythms of microarray work 

It is not just the introduction of microarray technology that produces 
uncertainty in lab practice. There are continued changes in technologies and 
experimental methods (such as protein and tissue arrays), so biologists must 
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repeatedly adjust their practices. Also, biologists sense that their data may have a 
short shelf life, depending on changes in tools and instrumentation. When tools 
change, old data may no longer be analyzable. Comparison is at the heart of data 
analysis: As we have seen, biologists compare one set of tumors to another, or 
normal cells to tumor cells, or cells at one moment to cells at another moment. 
Cross-experiment comparisons are made possible when each experiment is first 
compared to a common reference of some kind. But when the instrumentation 
changes, this throws up a barrier between past and future experiments—the 
reference changes too, and data can no longer be compared. New software can 
lead to the same problem, if data formats change. 

Computational approaches change the kinds of research questions people ask 
in molecular biology. The rapid updates to computational technologies increase 
the sense of urgency people feel in designing experiments to address their new 
questions. We have offered only a brief discussion of changing work practices 
here, but our interviews suggest that this would be a fruitful area to explore 
through extended observations of lab practice. 

Implications for Software Technology 

In this paper we have described the work of molecular biologists and some of the 
current changes in their science and practice. These are turbulent times for 
molecular biologists: As new understandings and new experimental approaches 
emerge, new questions and new ways of considering data emerge too. 
Microarrays in particular offer potential for great insight, but they do so by 
generating phenomenal amounts of data. These changes have led biologists to a 
collaboration with computational experts (statisticians, mathematicians, and 
computer scientists) to help in interpreting the resulting mountains of data. We 
have characterized this collaboration in two ways. It is a collision, in light of the 
felt impact of new methods of analysis and new colleagues who have quite 
different ways of making sense of data. It is also a convergence, as biologists and 
their analytical allies strive for a shared understanding that shapes the new 
biology. 

We have described how people from each discipline bring their own 
interpretative frame to the data and negotiate to find a mutually understandable 
and workable perspective—a "consensus hallucination." At the end of the day, 
people in biological and computational disciplines try to produce biological 
understanding by bringing their distinctive interpretive frames together. But as 
we have discussed, it is likely that there will be an ongoing need for negotiation 
between disciplines. It is not the case that biologists can simply learn how to run 
the numbers, the numbers and ways to run them continue to be problematic as 
biologists ask new questions and encounter new forms of data. Similarly, 
mathematicians and computer scientists are challenged to develop new analytical 
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methods to deal with the flexibility and multi-dimensionality of living systems. 
Biologists and computational experts need to continue their collaboration. 

This collaboration is largely mediated through software. Software plays a 
central role in representations of data, analytical tools, and databases of genomic 
information and research publications. There is currently a proliferation of new 
tools. People are trying out a variety of approaches, from natural language 
analysis of scientific literature to machine learning and probabilistic reasoning 
over data sets. In this environment, we have to assume that collaborative 
capabilities must coexist comfortably with many different analytical tools and 
databases. Support for rapid updates, user customization, and mix-and-match tool 
strategies is needed. Drawing, on our understanding of the difficulties 
experienced by biologists working with computational experts, we offer several 
recommendations for software to support their collaboration. 

Support exploratory thinking for groups. When biologists work with 
computational tools, they try out different ideas—changing parameters to see how 
clusters shift, going out to the gene databases to see what information comes up 
about some genes that appear in an interesting pattern, using a different 
visualization technique to see what new relationships it highlights. This is an 
exploratory process, and it is easy to lose track of the trail one has followed and 
the links that have emerged along the way to developing a biological story. It 
would be useful to have explicit support for the earliest phases of observing 
relationships and developing hypotheses from array data. This support might 
look like design rationale tools (e.g., Conklin & Begeman, 1988, Moran & 
Carroll, 1996), but the kind of software we envision would emphasize the short-
term capture of emergent lines of thinking, rather than long-term archives. The 
idea is to capture a developing understanding in a lightweight way—to help 
people remember (for now) that this gene should be explored further or that 
cluster looks familiar from another context. Annotations of both data and actions 
(across diverse tools) would be useful for this purpose. 

Take advantage of local experience. In addition to helping a small group to 
track its own developing ideas, it would be useful if people could piggyback on 
the ongoing activities of larger groups, such as those sharing a lab or a particular 
research focus. As people find that certain articles or gene database entries are 
more relevant for their purposes than others, they need ways to make those more 
salient to those around them and to their own computational environments. 
Previous work on adaptive indexing and collaborative filtering of large databases 
in light of their patterns of use among groups (e.g., Furnas, 1985, Maes, 1995) 
might be fruitfully reapplied in this domain. 

Support drill-downability. Array data span many layers of representation. 
As the data are visualized and manipulated using data anlysis tools, it is often the 
case that one layer of representation obscures others. For example, after image 
processing software has resolved the locations and magnitudes of spots on a slide, 
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spot data are usually replaced by numeric expression levels. There are sideways 
layers too—a multi-dimensional scaling program shows one view, and a 
dendogram shows alternative relationships among the same data points. Different 
perspectives are built into these views. When people in an interdisciplinary 
collaboration are trying to achieve the kind of double vision we have described, 
they need to juxtapose multiple views and see how they relate to one 
another—flexibly drilling down and across layers of representation to build a 
bigger picture and see how layers (and perspectives) link up. There are analogies 
here to coordinated multiple view systems, such as Spotfire (Schneiderman, 
1999). Supporting navigation through multiple views is one way of handing more 
control over to the biologists who use computational tools, to enhance their ability 
to apply their own intuitions while working with computational algorithms. 
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